skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Buttimer, Shannon M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Climate change has led to an alarming increase in the frequency and severity of wildfires worldwide. While it is known that amphibians have physiological characteristics that make them highly susceptible to fire, the specific impacts of wildfires on their symbiotic skin bacterial communities (i.e., bacteriomes) and infection by the deadly chytrid fungus, Batrachochytrium dendrobatidis, remain poorly understood. Here, we address this research gap by evaluating the effects of fire on the amphibian skin bacteriome and the subsequent risk of chytridiomycosis. We sampled the skin bacteriome of the Neotropical species Scinax squalirostris and Boana leptolineata in fire and control plots before and after experimental burnings. Fire was linked with a marked increase in bacteriome beta dispersion, a proxy for skin microbial dysbiosis, alongside a trend of increased pathogen loads. By shedding light on the effects of fire on amphibian skin bacteriomes, this study contributes to our broader understanding of the impacts of wildfires on vulnerable vertebrate species. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Habitat fragmentation can negatively impact wildlife populations by simplification of ecological interactions, but little is known about how these impacts extend to host-associated symbiotic communities. The symbiotic communities of amphibians play important roles in anti-pathogen defences, particularly against the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). In this study, we analyse the role of macroparasitic helminth communities in concert with microbial communities in defending the host against Bd infection within the context of forest fragmentation. We found that skin microbial and helminth communities are disrupted at fragmented habitats, while gut microbiomes appear more resilient to environmental change. We also detected potential protective roles of helminth diversity and anti-pathogen microbial function in limiting Bd infection. Microbial network analysis revealed strong patterns of structure in both skin and gut communities, with helminths playing central roles in these networks. We reveal consistent roles of microbial and helminth diversity in driving host–pathogen interactions and the potential implications of fragmentation on host fitness. 
    more » « less